Two New Eudesmanolides from the Flowers of Achillea millefolium

by Chun-Bao Zhang^a), Zhi-Yu Ni^{*b}), Jin Wang^c), Xia Qing^c), Hui-Min Yan^c), Qing-Wen Shi^b)^c), Françoise Sauriol^d), Yu-Cheng Gu^e), and Yi-Bing Wu^{*c})

^a) Department of Clinical Pharmacy, Harrison International Peace Hospital, No. 180 Renmin East Road, Hengshui 053000, P. R. China

^b) College of Basic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medicinal University, 361 Zhongshan East Road, Shijiazhuang 050017, P. R. China

^c) Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, P. R. China (phone: +86-311-86265634; e-mail: wybjean@126.com)

d) Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada

e) Syngenta, Jealott's Hill, International Research Centre, Berkshire, RG42 6EY, UK

Two new eudesmanolides, 3β -acetoxy- 1β , 4α -dihydroxy- $11\alpha H$ -eudesman-12, 6α -olide (1) and 3β -acetoxy- 1β -hydroxy- $11\alpha H$ -eudesman-4(15)-en-12, 6α -olide (2), were isolated from the flowers of *Achillea millefolium*, their structures were established on the basis of spectral analysis.

Introduction. – The genus *Achillea* (Compositae, Anthemideae) comprises over 100 species mainly distributed in the northern hemisphere, usually represented by small herbs. *Achillea millefolium* LINNAEAS (English name: yarrow), one of the most abundantly occurring species, has been important for a long time as a drug in traditional and modern medical practice [1][2]. The previous phytochemical investigation indicated that sesquiterpenoids and flavonoids were major components in the plant [3–7]. As part of our efforts screening bio-active agents with potential anti-tumor activities from *A. millefolium*, this report describes the isolation and structural elucidation of two new eudesmanolides **1** and **2** from the flowers of *A. millefolium*. Their structures were elucidated by extensive analysis of their spectral data (*Fig. 1*).

Results and Discussion. – Compound **1** was obtained as a gum. The HR-FAB-MS spectrum of **1** exhibited a *quasi*-molecular ion at m/z 365.1360 corresponding to the molecular formula $C_{17}H_{26}O_6$. The ¹H-NMR spectrum disclosed a total of 24 H-atoms attached to C-atoms, indicating the presence of two OH groups. Since the molecular formula contains five C=C equivalents, while only two C=O resonances and no olefinic

© 2015 Verlag Helvetica Chimica Acta AG, Zürich

C-atom could be observed in the ¹³C-NMR spectrum, the compound must be tricyclic. The ¹H-NMR spectral data (*Table 1*) showed two *singlets* at δ (H) 1.00 (s) and 1.38 (s), and a *doublet* at $\delta(H)$ 1.20 (d) revealing the presence of three Me groups, while one singlet at $\delta(H)$ 2.09 (s) indicated the presence of an AcO group. The same spectrum showed a typical doublet of doublet for H–C(6) at δ (H) 4.38 (dd). This H-atom correlated with the C-atom at $\delta(C)$ 78.8 in the HSQC spectrum, indicating a C(6)lactonized sesquiterpene lactone. The ¹H- and ¹³C-NMR data of **1** are similar to those described for matricolone, but some chemical shift differences at C(7), C(11), C(12), and C(13) in both ¹H- and ¹³C-NMR spectra were observed. These differences indicated that this compound should be an isomer of matricolone at Me(13). The β -orientation of Me(13) was definitely confirmed by the NOESY correlations observed, H-C(6)/MeC(13,14,15), and H-C(7)/H-C(11), as well as an absent important NOESY correlation H-C(6)/H-C(11), which was observed in matricolone [8] (Fig. 2). This conclusion was further supported by the chemical shift of C(13) at $\delta(C)$ 9.7, which was consistent with the reported value in the literature, *ca*. $\delta(C)$ 9.5 for β -orientation and $\delta(C)$ 12.5 for α -orientation [9]. Full assignments of the H- and Catom signals were secured by 1H,1H-COSY, HSQC, and HMBC spectral analysis. Thus, compound **1** was identified as 3β -acetoxy- 1β , 4α -dihydroxy- $11\alpha H$ -eudesman-12, 6α olide, as shown in Fig. 1.

Compound **2** was isolated as a gum. The HR-FAB-MS spectrum of **2** exhibited a *quasi*-molecular ion at m/z 347.1255 corresponding to the molecular formula $C_{17}H_{24}O_5$, which accounts for the six degrees of unsaturation in the molecule. The ¹H-NMR spectral data of **2** (*Table 2*) displayed one *singlet* at $\delta(H) 0.83$ (*s*), and a *doublet* at $\delta(H) 1.20$ (*d*) revealing the presence of two Me groups; one *singlet* at $\delta(H) 2.12$ (*s*) indicated the presence of an AcO group, which was further confirmed by the signals at $\delta(C) 20.9$

Position	$\delta(\mathrm{H})$	$\delta(C)$	HMBC	NOESY
1	3.58 (dd, J = 11.7, 3.8)	75.8	14	3, 2a, 2b, 5
2	$2.02-2.07 (m, H_a), 1.68-1.74 (m, H_b)$	33.5	1, 3	1, 2b, 3, 7 1, 2a, 3
3	4.82 (dd, J = 12.5, 4.7)	75.8	2, 4, 15, MeCO	1, 2a, 2b, 5
4	_	73.5		
5	1.67 - 1.75 (m)	54.4	1, 3, 4, 6, 7, 10, 14, 15	1, 3, 7
6	4.38 (dd, J = 11.1, 5.4)	78.8	5, 8, 10, 12	13, 15, 14
7	2.12 - 2.19(m)	49.1		2a, 5, 11
8	$1.70 - 1.76 (m, H_a), 1.58 - 1.65 (m, H_b)$	20.5		
9	$1.97 - 2.04 (m, H_a), 1.18 - 1.25 (m, H_b)$	39.2		
10	_	41.9		
11	2.57 - 2.65 (m)	37.5		7
12	_	179.1		
13	1.20 (d, J = 7.7)	9.7	12, 11, 7	6, 11
14	1.00(s)	13.6	5, 1, 10, 9	6
15	1.38 (s)	19.0	5, 4, 3	6
AcO OH	2.09 (s) 3.05 (s)	21.8, 170.8		

Table 1. ¹H- and ¹³C-NMR Data, HMBC, and NOESY Correlations of 1 (in CDCl₃)

Fig. 2. The key NOESY $(\mathrm{H} \mathop{\leftrightarrow} \mathrm{H})$ correlations of compound 1

Table 2	¹ H ₋ and ¹³ C ₋ NMR	Data I	HMRC	and NOESY	Correlations of	f 2 (i	n CDCL)
1aut 2.	II- unu C-MMA	Duiu, 1	IMDC,	unu NOESI	Corretations c	'J ≝ (1	$(CDCI_3)$

Position	$\delta(\mathrm{H})$	$\delta(C)$	HMBC	NOESY
1	3.59 (dd, J = 11.7, 4.3)	75.7	2, 10, 14	2a, 3, 5, 9b
2	$2.18-2.24 (m, H_a), 1.57-1.62 (m, H_b)$	36.9	1, 3, 4, 10	1, 2b, 3 2a, 14
3	5.12 - 5.19(m)	70.1	MeCO	1, 2a, 5
4	_	140.5		
5	2.00-2.06(m)	50.3	4, 6, 10, 14	1, 3
6	4.30 (dd, J = 10.9, 4.1)	77.3	7, 8	13, 14, 15b
7	2.10-2.15(m)	48.1		11
8	$1.68 - 1.75 (m, H_a), 1.51 - 1.58 (m, H_b)$	20.1	7, 9	9a, 9b, 8b 7, 8a
9	$2.02-2.08 (m, H_a), 1.27-1.33 (m, H_b)$	35.7	8, 10 1, 7, 8, 10, 14	8a, 8b, 9b 1, 8a, 9a
10	_	42.4		
11	2.61 - 2.67 (m)	38.5	6, 7, 12, 13	7, 13
12	_	179.6		
13	1.20 (d, J = 7.6)	9.5	7, 11, 12	6, 11
14	0.83 (s)	11.5	1, 5, 9, 10	2b, 6, 9a
15	$5.17 (s, H_a), 4.99 (s, H_b)$	107.8	3	15b
			5	6, 15a
AcO	2.12 (s)	20.9, 169.6		

and 169.6 in the ¹³C-NMR spectrum. The *singlets* at $\delta(H)$ 5.17 (*s*) and 4.99 (*s*) confirmed the presence of an exomethylene group. A typical *doublet* of *doublet* for H–C(6) at $\delta(H)$ 4.30 (*dd*), which correlated with the C-atom at $\delta(C)$ 77.3 in the HSQC spectrum, indicated that **2** was also a C(6)-lactonized sesquiterpene lactone. On comparison of NMR spectra data of **2** and **1**, an exomethylene group in **2** replaced a OH and a Me group at C(4) in **1**. The chemical shift of C(13) at $\delta(C)$ 9.5 and NOESY correlations observed H–C(6)/Me(13,14) and H_b–C(15), and H–C(7)/H–C(11) let us assign the β -configuration of Me(13) as in **1**. Taking all these data into accountment, compound **2** was characterized as 3β -acetoxy-1 β -hydroxy-11 α H-eudesman-4(15)-en-12,6 α -olide, as depicted in *Fig. 1*.

Conclusions. – In conclusion, two new eudesmanolides, 3β -acetoxy- 1β , 4α -dihy-droxy- $11\alpha H$ -eudesman-12, 6α -olide (1) and 3β -acetoxy- 1β -hydroxy- $11\alpha H$ -eudesman-4(15)-en-12, 6α -olide (2), were isolated from the flowers of *Achillea millefolium*.

Experimental Part

General. NMR Spectra: Varian Inova 500NB NMR spectrometer; δ in ppm rel. to Me₄Si as internal standard, J in Hz. MS: VG-ZAB-HS spectrometer; in m/z.

Plant Material. The flowers of *A. millefolium* were purchased in September 2003 in Montreal, Quebec, Canada. The plant material was identified by Dr. *J.-H. Wang*, laboratory of Pharmacognosy, Hebei Medical University. Several specimens (under accession voucher number Qw-1999-01) have been deposited with our laboratory, Hebei Medical University.

Extraction and Isolation. Powered air-dried flowers of *A. millefolium* (4.2 kg) were extracted with 16 l of MeOH by shaking for 1 d at r.t. The ground plants were filtered and extracted again with fresh solvent for another 3 d, each with 6 l of MeOH. The combined org. extract was evaporated under reduced pressure. H_2O (41) was added to the crude extract, and lipids were removed by stirring the mixture with hexane (4 × 3.21). The aq. phase was then salted with NaCl and extracted with AcOEt for four times (each 3.21). The combined AcOEt extracts were dried (anh. Na₂SO₄), filtered, and evaporated in a rotary evaporator to yield a dark brown extract of 149 g.

The AcOEt extract was subjected to column chromatography (CC) on silica gel 60 (SiO₂; 60–200 mesh, 1.5 kg, 8×68 cm), eluted with AcOEt/MeOH 95:5 (2.51). After elution, the SiO₂ was cut into 15 equal bands, and each band was individually eluted with AcOEt/MeOH 1:1. The relents of the column from bands 3 to 6 were combined after analyses by TLCs and evaporated to yield 43 g of residue *A*, which then was fractionated by CC on SiO₂ (1200 g, 9.5×30) with hexane/AcOEt (3:1 to 1:4) as eluent. The eluted fractions were monitored by TLC and combined into ten pooled fractions (*Frs.* A_{1-} A_{10}). *Fr.* A_3 was further fractionated by SiO₂ CC. Elution was carried out using gradients of hexane/acetone (2:1 to 1:1). Combination of the fractions on the basis of TLC analyses afforded eight fractions (*Frs.* A_{3-4} - A_{3-8}). *A* part of *Fr.* A_{3-3} was submitted to prep. TLC with hexane/AcOEt 3:2 as developing solvent to yield *Frs.* A_{3-3-1} and A_{3-3-2} . Both of them were further purified by prep. TLC developed with hexane/AcOEt 1:1 as developing solvent to yield *Frs.* A_{3-6-1} and A_{3-6-2} . *Fr.* A_{3-6-1} was further purified by prep. TLC with hexane/AcOEt 1:1 as developing solvent to yield *Frs.* A_{3-6-1} and A_{3-6-2} . *Fr.* A_{3-6-1} was further purified by prep. TLC, developed with hexane/acetone 3:2, and yielded **2** (1.3 mg, R_{f} 0.33).

 3β -Acetoxy- 1β , 4α -dihydroxy- 11α H-eudesman-12, 6α -olide (=8-(Acetyloxy)decahydro-6,9-dihydroxy-3, 5α ,9-trimethylnaphtho[1,2-b]furan-2(3H)-one; **1**). Gum. $[\alpha]_D^{2D} = +23$ (c = 0.10, MeOH). ¹H-and ¹³C-NMR: see Table 1. HR-FAB-MS: 365.1360 ($[M + K]^+$; calc. 365.1366).

 3β -Acetoxy- 1β -hydroxy- 11α H-eudesman-4(15)-en-12, 6α -olide (=8-(Acetyloxy)decahydro-6-hydroxy-3,5a-dimethyl-9-methylenenaphtho[1,2-b]furan-2(3H)-one; **2**). Gum. [α] $_{D}^{22}$ = +31 (c = 0.10, MeOH). ¹H- and ¹³C-NMR: see *Table 2*. HR-FAB-MS: 347.1255 ([M+K]⁺; calc. 347.1261).

We are grateful for the financial support from *National Natural Science Foundation of China* (81072551, 81241101), *Hebei Province Outstanding Youth Science Fund Project* (H2015206482), *Scientific Research Foundation of Hebei Province* (C2010000489), *Natural Science Foundation of Hebei Province* (H2014206230), *The Youth Foundation of Hebei Educational Committee and Technology Research Project* (QN2014090), and *Projects of Science & Technology of Administration of Traditional Chinese Medicine of Hebei Province* (2014133). We also wish to extend our sincere thanks for the financial support of *Syngenta Ltd.* (2011-Hebei Medical University-Syngenta-03).

REFERENCES

- [1] R. F. Chandler, S. N. Hooper, M. J. Harvey, Econ. Bot. 1982, 36, 203.
- [2] T. Lakshmi, R. V. Geetha, A. Roy, S. A. Kumar, Int. J. Pharm. Sci. Rev. Res. 2011, 9, 136.
- [3] Y. Li, Z.-Y. Ni, M. C. Zhu, K. Zhang, Y.-B. Wu, M. Dong, Q.-W. Shi, C.-H. Huo, F. Sauriol, H. Kiyota, Y.-C. Gu, B. Cong, Z. Naturforsch., B 2012, 67, 438.
- [4] Y. Li, M.-L. Zhang, B. Cong, S.-M. Wang, M. Dong, F. Sauriol, C.-H. Huo, Q.-W. Shi, Y.-C. Gu, H. Kiyota, *Biosci., Biotechnol., Biochem.* 2011, 75, 1554.
- [5] Y. Li, M.-C. Zhu, M.-L. Zhang, Y.-F. Wang, M. Dong, Q.-W. Shi, C.-H. Huo, F. Sauriol, H. Kiyota, Y.-C. Gu, B. Cong, *Tetrahedron Lett.* **2012**, *53*, 2601.

- [6] U. Farooq, A. Khan, S. S. Khan, S. Iqbal, R. Sarwar, S. B. Khan, V. U. Ahmad, Z. Naturforsch., B 2012, 67, 421.
- [7] C.-H. Huo, Y. Li, M.-L. Zhang, Y.-F. Wang, Q. Zhang, F. Qin, Q.-W. Shi, H. Kiyota, Chem. Nat. Compd. 2013, 48, 958.
- [8] L. Zaiter, M. Bouheroum, S. Benayache, F. Benayache, F. León, I. Brouard, J. Quintana, F. Estévez, J. Bermejo, *Biochem. Syst. Ecol.* 2007, 35, 533.
- [9] Y. Zhu, L.-X. Zhang, Y. Zhao, G.-D. Huang, Food Chem. 2010, 118, 228.

Received September 1, 2014